If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5w+2w^2=42
We move all terms to the left:
5w+2w^2-(42)=0
a = 2; b = 5; c = -42;
Δ = b2-4ac
Δ = 52-4·2·(-42)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-19}{2*2}=\frac{-24}{4} =-6 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+19}{2*2}=\frac{14}{4} =3+1/2 $
| 10k+6=3k+34 | | 2(8)+2y=72 | | 2/x=5/2x-1 | | -9=m/3-7 | | 8v+1=70v-20 | | x/1-x=2.26 | | 2(8)+2l=72 | | 3x+9=x+25 | | 2s-19=27 | | 2s−19=27 | | -p+10=1 | | 2x+3=2/6 | | 3=y-85/3 | | 3/4=-6e-5/8 | | -7+9k=-106 | | 3x^2+3x=97 | | 3/10(12x-16)=2/5(12-3x) | | -5+6r=-95 | | -1+5y+1=0 | | x^2+16x+81=0 | | 3=y−85/3 | | 1+5y+1=0 | | -49+4g=35 | | 9(r+3)=99 | | X^2+-8x+0=0 | | 3x-2=-7+9 | | 6w=45-3w | | 53+90+(2x+3)=180 | | 3t-2+t-5=-1 | | x^2=7x=1 | | 56+w=8w | | x^2+x+81=0 |